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Abstract

The Void-and-Cluster algorithm for designing dither arrays is both simple and general.  Considerable attention has
been placed on the selection of various linear and nonlinear cluster-finding filters.  In this paper, the importance of
separating the treatment of the shape and spatial extent of cluster-finding filters is illustrated.  Lack of such
separation may be a source of confusion in other filter design efforts.  The effect of finite precision on the
implementation of these filters is analyzed.  For a Gaussian filter, the limits imposed by the floating-point exponent
and mantissa are shown to define the limits of spatial extent and discrimination.

1. Introduction
High quality dithered images can result from processes that employ neighborhood operations, such as error

diffusion, or from multipass processes that use iterative optimization algorithms.   But for high speed and
simplicity of implementation, ordered-dither methods are in a distant first place.  This is particularly true for video
applications where a high premium are placed on these requirements.  Ordered dither or screening techniques are
point operations that simply compare the current pixel with a periodic and deterministic threshold array.

The first step in creating an ordered dither threshold array is the design of a template which ranks the order of
the thresholds.  Subsequent steps normalize this template by including tone correction and range adjustment to
account for the number of input and output levels.  The design of the template is central to the nature of the
perceived textures in the output.

The method of recursive tessellation [1] generates dispersed-dot ordered dither templates of which the familiar
patterns described by Beyer [2] are a subset.  The method builds the template by recursively filling the center of the
largest voids in the intermediate patterns.  This method was generalized by the void-and-cluster method [3].  It is
generally agreed that blue noise [4] properties are the most pleasant for display devices where disperse-dot dither
patterns can be accommodated.  While the void-and-cluster method is extremely simple, it is versatile enough to
generate arrays with blue noise properties as well as recursive-tessellation arrays.

Recent work [5][6] include the incorporation of the visual system and printer models in the design of blue
noise ordered dither arrays.  A very different method for generating blue noise ordered dither arrays based on
manipulation of power spectra is described by Mitsa and Parker [7].

2. Filter Width vs. Extent
Central to the void-and-cluster method is the mechanism, or filter, for finding the center of voids or groups of

majority pixels, and finding the center of clusters or groups of minority pixels.   Such filters should have at least
the following three properties:

1.  Isotropic about the center point,

2.  Higher weight for locations closer to the center point, and

3.  Unbounded in extent.

While a number of mechanisms can satisfy these properties, a symmetric Gaussian is perhaps the simplest to
describe:
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This function is shown in Figure 1 where the two characteristics of width, σ,  and extent (or region of
support), R, are illustrated.

Figure 1. Width vs. extent of a  radial slice of a 2D Gaussian function.

It was first reported [3] that a good example of a void-and-cluster finding filter was a simple Gaussian with a
fixed width of 1.5, in units of pixel periods. More details of the associated experiments with the filter width were
later presented [8].

In typical signal processing applications, the contribution of such a filter looses its significance beyond an
extent of 3σ or 4σ.  The key point of this paper is that this is not the case when used as a void or cluster finding
filter!  As can be seen in Figure 2, the ability of a Gaussian to discriminate between adjacent concentric “shells” of
more distant pixels continues unbounded, and this should not be prematurely constrained.

Figure 2. Ratio between neighboring concentric shells of a Gaussian increases with distance.

The need to make the filter width adapt to the principal wavelength (average distance between minority pixels)
in subsequent studies [9] [10], may be due to the limiting of the filter extent.  If untruncated, the use of a Gaussian
in the array generation process results in excellent patterns at all gray levels.

Of course the use of  finite computational tools will set some limit on the extent, but this limit turns out to be
quite generous.   There are two number that restrict the effective extent in the computation of Gaussian filtering,
the size of the exponent and mantissa of the floating point representation, which will now be examined separately.

3. Exponent Limit
Figure 3 illustrates the components of a floating point number.  The exponent is allocated E bits, and the

mantissa M bits.  Typical values for single precision are E=7 and M=23; For double precision, E=10 and M=52.
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Figure 3. Typical bit allocation in a floating point number.

The value of E limits the extent R of G(r) in cases of long principle wavelength.  The smallest number that can
be digitally represented is
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So for single precision,  R ≈ 13.3σ, and for double precision, R ≈ 37.7σ.
Figure 4 illustrates the problem of finding the center of the largest void in a long wavelength situation. In this

simple example, a single minority pixel is present in a 16 by 16 array.  In Figure 4b, the entire 16 by 16 period is
tiled a few times to help visualize the center of the void; the void location is circled.  The void-finding filter will
identify incorrect void centers if the extent is limited, regardless of the value of σ.  In Figure 4a, the correct pixel C

will be located for all extents greater than 128 . Examples of incorrect identifications are pixel A when R=5, and
pixel B when R=8.3.

Figure 4. Locating the center of the largest void in a long wavelength pattern.  (a) The resulting locations, A, B, and C,  using
filters with different extents, R=5, R=8.3, and R>11.3, respectively. (b) Tiling the pattern in (a) with the true void center
circled.

Figure 5a shows a g=2/256 pattern at 50 dpi resulting from the use of a dither array  with the incorrectly
identified void pixel A, and Figure 5b shows the pattern with the correct void pixel C identified.

Figure 5. Resulting periodic patterns based on different void finding criteria. (a) Using location A from Figure 4a, and (b)
using the correct location C.

4. Mantissa Limit
The number of mantissa bits, M,  limits the extent R of G(r) in cases of short principle wavelength that occur

near g=1/2.  In such cases, the problem is not the absolute value of the contribution of a pixel, but its value relative
to the strongest contributing pixel.  Since pixels closer to the filter center are “seen” much brighter, the situation is
analogous to detecting candles next to the sun.  In the presence of a closer pixel at r0, the effective filter extent is
the farthest pixel at R that will still contribute to the convolution. This is governed by the size of M:
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In short wavelength cases, the worst case is r0 = 1.  For the case of σ = 1.5, R ≈ 8.53 for single precision and R ≈
12.78 for double precision.

Figure 6 illustrates the problem of finding the center of the largest cluster in a short wavelength pattern. This
example recursive tessellation pattern is chosen because the correct answer is well known.  The same extents are
used as in Figure 4, resulting in the identification of pixels A, B, and C.  The tiny contribution from the absence of
the one black pixel not in the checkerboard must be felt in the presence of many other much weightier
contributions surrounding the candidate central pixels to make a difference.  Note again that these results are
independent of the filter width.

Figure 6. Locating the center of the largest cluster in a short wavelength pattern.  The resulting locations, A, B, and C,  using
filters with different extents, R=5, R=8.3, and R>11.3, respectively.

Figure 7a shows a g=126/256 pattern at 50 dpi resulting from the incorrect identification of cluster pixel A,
and Figure 7b shows the pattern with the correct cluster pixel C identified.

Figure 7. Resulting periodic patterns based on different cluster finding criteria. (a) Using location A from Figure 6, and (b)
using the correct location C.

5. Blue Noise Example
The examples in Figure 4 and Figure 6 indicate how the void-and-cluster method can be used to automatically

generate recursive tessellation arrays.  The more important use of the method is, of course, the generation of dither
templates that can produce blue noise patterns.  In Figure 8, two 64 by 64 dither patterns of gray level g=4/256 are
displayed at 50 dpi with the void-and-cluster method using the same width of σ = 1.5, but different filter extents.
The patterns in both (a) and (b) include 4 periods to illustrate the wrap-around effects,  Figure 8a resulted from a
Gaussian filter with an extent of only 3σ = 4.5, and resembles the Figure 4 from Lin’s paper [10] presented at this
conference last year.  In that paper, the lack of an adaptive width was cited as the shortcoming.  The actual
shortcoming is due to the truncation of the filter in that simulation.  Figure 8b, shows the more uniform pattern
that results when a filter with any extent greater than 8 is used.
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Figure 8. Long wavelength patterns generated with identical filter widths of σ =1.5, but different extents, (a) R=4.5, and (b)
R>8.

6. Conclusion
A key property of a Gaussian filter as a void-and-cluster finding filter is its unbounded extent. Unnecessarily

truncating its extent can produce unwanted asymmetries in both long and short principle wavelength patterns.
This paper demonstrated this for the cases of recursive tessellation and blue noise dither templates.  Adapting filter
widths to the principle wavelength (or gray level) does not appear to be have an appreciable effect on quality.
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