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ABSTRACT

This paper presents a novel method to recover planar projections
(homographies) from perspectively distorted images of clustered-
dot halftones. The method uses the variation of the local affine
deformation of the halftone (estimated using a Fourier method) to
recover the additional projective components. Evidence provided
from simulated distortion and mobile capture shows that the
approach provides an effective first step in the problem of using
mobile device to recover stenographic information embedded in
unknown halftone images, as pixel-accurate alignment is needed to
recover the data.

Index Terms— Fourier Transform, Planar
Homography, Vanishing Points, Halftone, Stegatone.

1. INTRODUCTION

Projection,

We are interested in recovering undistorted images of printed
clustered-dot halftones using a mobile device such as a mobile
phone with a high resolution camera module. As the quality and
resolution of mobile phone modules continues to improve, cameras
are able to more clearly delineate the individual dots of a printed
halftone pattern. In particular our focus is on using mobile devices
to recover stenographic information that has been represented in
the halftone structure by modulating the position of the individual
printed halftone dots [1]. In order to achieve this goal it is
necessary to correct the inevitable perspective distortion of the
image caused by the non-frontoplanar orientation of the camera.
Previously [2] we have relied on having knowledge of the
image used to create the data-bearing halftone and have used a
multi-scale gradient descent alignment scheme [3] derived from
the well-established Lucas and Kanade method [4] to recover
affine and projective distortions; an initial approximation can be
achieved by matching image features similar to SIFT [5] recovered
from the coarsest scale of the multi-scale representation. There is
an advantage for some applications, however, if knowledge of the
image used to generate a data-bearing halftone remains unknown
to the recovery device. Such a recovery scheme requires that the
planar projective distortion be recovered directly from the image of
the printed halftone, a problem solved in the work presented here.
If we are able to accurately distinguish the four corners of a
rectangular printed image of known aspect ratio, then it is straight
forward to compute the planar homography that relates the
captured image to the original print by solving a linear system of
equations with 8 unknowns [6]. In practice we may not know the
aspect ratio of the image, its corners may not be preserved in the
halftone rendering process (as they may lie in a highlight region of
the image and hence halftone dots may not extend to the corners)
or the extent of the physical print may extend beyond the limits of
the captured image. An alternative is to use a scheme akin to that
used to dewarp documents [7, 8] where text grouping is typically
used to form first words and then lines, and to group bundles of
lines and/or identify orthogonal edges such as justified paragraph

boundaries, and from these identify two vanishing points that
define the projective plane. This process, however, is made more
complex for halftones by the fact that the local structure within the
halftone pattern is more difficult to discriminate as it also depicts
the pictorial content and as a result it can be computationally
expensive to use low-level grouping strategies to effectively
recover the vanishing points directly from the halftone patterns.

Instead, to our knowledge for the first time, we use the periodic
nature of the halftone pattern and its representation in Fourier
domain to robustly compute affine approximations to the local
transform at different points in the captured halftone image, and
from their subtle combination recover the remaining parameters of
the homography up to a translation. Our method assumes that the
structure and size of the halftone screen is known in advance,
which is not unreasonable as we are in control of the printing
process. If, however, the size is not known, but the structure is (e.g.
that it is a standard 45 degree halftone screen), then there will be
an additional unknown global scale parameter in the recovered
planar perspective transformation.

2. METHOD

In order to remove the projective distortion from the perspective
image of a plane it is necessary to recover the projective transform
or homography that relates the rectified image coordinates to their
distorted counterparts. In homogeneous coordinates this transform
can be represented as a 3x3 matrix, /
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or simply x' = Hx, where finally x" = x'/w' and y"' = y'/w'.
Note that the planar homography is the most general form of this
transformation and that it can be represented as being composed
from affine 4 (2x2) and translation ¢ components when the
elements of v are zero.

For simplicity we restrict our attention to a monochrome 45
degree clustered-dot halftone screen with a cell period of 150 cells
per inch (when printed at 600 dots per inch; dpi) in each of the
horizontal and vertical directions (referred to as a 106.1 line per
inch (Ipi) screen as the spacing is measured in the 45 degree screen
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Figure 1. Digital 45 degree 12.5% halftone screen (top) and a
similar scanned print from a HP LaserJet 1200 (bottom).



Figure 2. Magnitude of the Fourier transform (shown as inverted
log to see weaker higher frequency components) of the 45 degree
halftone screen in Figure 1.

Figure 3. (a) Digital bitmap of a Stegatone with (b) its Fourier
transform highlighting fundamentals using color dots; (c) a region
of a 400dpi print with its Fourier Transform in (d).

direction). An example of the regular structure of this screen is
shown in Figure 1 for a 12.5% uniform grey level (e.g. value 224
out of a range 0 to 255). This screen is the most commonly used
monochrome clustered-dot halftoning screen (for example here
shown for the print from a HP LaserJet 1200) and is the same
structure as we use in our work on data-bearing halftones, or
Stegatones [1]. Computing the discrete Fourier Transform (DFT)
of a patch of this 12.5% grey halftone pattern and examining its
magnitude (as shown in Figure 2) we see that the fundamental
frequencies of the halftone pattern along the 45 degree directions
are strongly visible as a set of 4 peaks surrounding the DC (at the
center of the DFT). Also evident are a number harmonics repeated
toward the boundary of the baseband.

2.1 AffineDFT

We find that this structure of the DFT is strongly preserved when
the halftone depicts image content, even in the case where the
structure of the halftone has been disturbed to create a Stegatone.
Figure 3 shows a Stegatone of a face image and the magnitude of
the Fourier transform of a central 256x256 image region in both its
pure 316x400 pixel digital form and after printing (at 400 dpi) and

mobile capture using a 2MP Web Camera (where the depicted
region is approximately 600x600 pixels square). Each cell in the
halftone is 4x4 pixels with many of the cells/dots shifted to encode
information. It is straight-forward to recover the affine components
of the transform (except for the translation which must be set to
zero) from the relative displacement of the fundamentals using the
well-known result [9] that an affine transform measured in the
DEFT is related to that in the image space as
Ar= (Arr )T 2

where A; and Arr are the 2x2 affine transforms in the image and
Fourier domains respectively. Asr can be solved by identifying
the corresponding locations of a pair of fundamentals between the
digital and captured images (e.g. 3(b) and 3(d)). Note that the
Fourier Transform is symmetric with respect to the location of the
DC and thus appropriate pairs of fundamentals describe all four
locations. We call this the AffineDFT method. What is more, in
those cases where the actual transform includes planar perspective
components, AffineDFT will provide a reasonable approximation
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to the local planar homography at the center of the region covered
by the DFT. The accuracy of this approximation will depend on the
magnitude of the non-affine components and as the transform
becomes more and more strongly perspective (shorter viewing
distance and less frontoparallel) then the approximation will break
down as the locations of the fundamentals, in the DFT, becomes
less distinct.

To help illustrate the local affine approximation to the
transform, we show overlaid in Figure 3(c) diagonal red and green
lines that correspond to the 45 degree screen directions (with
respect to the original digital halftone pattern). As we move about
the captured image the transformed screen directions vary to reflect
the non-affine nature of the planar projection.

2.3 ProjDFT

Consider now the case where we know the full planer homography
H that transforms points from the digital halftone pattern into the
captured image. This transformation is illustrated in Figure 4
where we consider the North, East, West and South cardinal points
(N, E W, §) displaced a distance M from an origin O. The
diagonals that join the cardinal points correspond to the 45 degree
screen directions of the halftone. In this case the positions of the
cardinal points in the perspective image are simply
N'=HN; E=HE; W=HW, S=HS “)

as shown on the right in Figure 4; the projected diagonals can be
extended to meet at vanishing points VP71 and VPZ on the line at
infinity. Lines parallel to one screen direction will converge on
VP1 and lines parallel to the other converge on VPZ2.

Conversely, given the vanishing points VP and VP2 and
selecting any two points as approximations for N’ and S the
intersecting lines from the vanishing points through them will
produce £”and W’ where the quadrilateral N’E'S'W’is guaranteed
to be the projection of a rectangle in the original halftone space the
sides of which are parallel to the screen directions. The closer the
approximation of V" and S’ to their true locations, the closer the
rectangle will be to the original square defined by cardinal points
NESW in the rectified halftone space. In any case, the planar
homography that relates the four points NEWS and N’E'W’S’ will
be correct up to an unknown scale and aspect ratio (needed to map
the unknown rectangle to the known square).
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Figure 5. (a) Transformed cardinal points and recovered screen
directions; (b) Vanishing lines for those same points.
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Figure 6. (a) Reconstructed East and West cardinal points using
approximate North and South cardinal points plus calculated
vanishing points; (b) Dewarped image using homography
calculated from the 4 transformed cardinal points.

We solve the homography relating the NEWS and NE'W'S’
quadrilaterals using a standard linear method [6] as non-linear
methods hold no advantage when computing an exact solution.
That is, we form an 8x9 matrix A where each matched pair of
points Xand X’contribute two rows
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where the length-9 vector /4 is formed from the elements of Hy in
row order. The solution of the A4 up to an unknown scale
corresponds to the null space of 4 and can be found using single
value decomposition (A=UDVT where D is a diagonal matrix of
singular values) where A then corresponds to the column of V' with
the smallest single value in D. The final scale and aspect ratio can
be recovered by applying the AffineDFT method to a reconstructed
image based on Ay to reveal a correcting affine transform Ac
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The overall approach, called ProjDFT, is as follows:

1. Use AffineDFT to estimate an initial central affine 4.

2. Use Arto transform the cardinal points to NE'W'S”
(Equations 3 & 4 and Figure 5a).

3. Ateach transformed cardinal point, apply AffineDFT to
recover the local screen direction vectors (Figure 5a).

4.  Approximate two vanishing points VP7 and VP2 from
the sets of orthogonal screen directions (Figure 5b).

5. Update £’and W’ by intersecting lines from VPZ7 and
VP2 through the original NV’and S’ (Figure 6a).

6. Calculate the homography H, from the new positions of
the four cardinal points (Equation 5).

7. Rectify the original image using H, (Figure 6b).

8. Apply AffineDFT to recover 4. and, in turn, the final
corrected homography H. (Equation 6).

In practice, we can iterate ProjDFT to successively improve the
approximation as the use of AffineDFT to approximate the local
screen directions improves for the increasingly small perspective
distortions. The vanishing points are calculated by minimizing the
orthogonal error at the end of the appropriate 45 degree screen
direction vectors for the line from the vanishing point through the
respective transformed cardinal point.

3. RESULTS

We have conducted a large number of experiments on simulated
data in order to explore the utility of the ProjDFT algorithm across
a wide range of image types and system parameters. We have also
performed a more limited test on real printed data comparing the
performance to an existing image registration technique [2].

3.1 Simulated Data

In order to explore a wide parameter space we construct a large
number of 2Kx2K digital halftones and related Stegatones derived
from them with random payloads. We use 492 images from the
McGill calibrated color image database [10] (specifically, the
Animals, Landscapes and Man Made subsections). From each
786x576 RGB color TIFF images we extract the central 500x500
region of the green channel, scale it to 2000x2000 pixels and
generate halftone and random payload Stegatone images with 4x4
pixels to each halftone cell.

Distorted test images are generated by selecting a halftone or
Stegatone at random from the pool of 492 and warping it using a
random planar homography of prescribed magnitude. The
homography is defined by randomly displacing the four corners of
the image over a range [-R, +R ] according to a uniform random
distribution in each of the x and y directions. The homography is
estimated using ProjDFT, with no knowledge of the pattern other
than the fact that it is derived from a 45 degree halftone with a cell
size of 4x4 pixels, and compared directly against the randomly
generated homography used to warp the original halftone. The
transforms themselves will not be identical as ProjDFT does not
recover the translation. Thus, instead, we measure the extent to
which they transform the relative locations of the image close to
where the transform was estimated (i.e. the center of the distorted
test image) back to the original rectified halftone geometry. In
order to compare the two (inverse) homographies A’ and H" the
following relative error measurement is used. Consider two



points € and R = C+D where C is the center of the distorted
halftone image and R is a relative displacement D from it. The
respective transformed image locations are

C'=HC R=HR C'=H"C;, R"=H'R 7
from which the relative displacements after transformation are
D'=R"-C" D"=R"-C" @®)

and the relative error is D"-D’and can be expressed as a relative
percentage error

100%||D"-D’||
% = min(lIp’IL1D"1) ©)
For a tested image, the final reported accuracy of the homography
is obtained by computing the value Ey, at the four corners of a
200x200 pixel square centered on C, and taking the maximum.
Typical results for a DFT of size 512x512 and a spacing of
cardinal points, M, of 512 pixels is shown in the graph in Figure 7
for 10 iterations of ProjDFT, plotting the median Eg, (over 100
random trials) for distortion parameter, R, ranging from 40 to 400
pixels. Note that for all values of R, the median error reduces to
about 0.13% after the 10 iterations asymptotically approaching a
limit governed by the number of samples in the DFT and the
resolution of the image. For comparison a similar experiment using
the existing image based registration method has a median
percentage error rate of 0.08%.
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Figure 7. Relative error for various levels of random distortion (R)
over 10 iterations of ProjDFT.

In Table 1, we explore the two most important parameters of
the ProjDFT method: the size of the DFT and the spacing, M, for a
fixed distortion R = 400 pixels. For each parameter combination
we present the median percentage error, Eq, after 10 iterations.
Notice, that as the size of the DFT and the spacing of the cardinal
points increase from 128/64 to 512 pixels the accuracy improves
significantly. Note also, that all results presented here are for
Stegatone data; the results for un-modified halftones are similar.

Table 1.Median percentage error over 100 tests for various sizes of
the DFT (rows) and spacing, M, of the cardinal points (columns).

Ey 64 128 256 512
128 0.96 0.68 0.53 0.59
256 0.47 0.37 0.26 0.25
512 0.29 0.25 0.19 0.13

3.1 Mobile Capture Data

The real data consisted of 100, randomly selected, Stegatone
images printed at 400dpi on a monochrome HP LaserJet 4345M
printer. Each was captured using a 2MP HP 3300 HD Web Camera
(1080x1920 pixels) including varying degrees perspective

distortion. The DFT was 512x512 and the spacing of cardinal
points, M, was 256 pixels. Resulting homographies are compared
with those obtained using the alternative multi-scale image
registration method [2]. The histogram of E, between the
recovered homographies is shown in Figure 9 (right) with median
value of 0.32%. A similar comparison was performed using the
same parameter settings for 100 simulated distorted images (R =
400) and is shown on the left (median value 0.19%). The small
gap between real and simulated data could arise from a number of
sources including un-modelled non-linear distortion of the images
as a result of lens distortion and motion blur. Accordingly, as the
two registration methods operate on slightly different regions of
each image their results may diverge slightly.
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Figure 9. Percentage error histograms for simulated (left) and real
(right) data comparing against an image based registration method.

4. DISCUSION

We have shown that it is possible to recover planar homographies
from clustered-dot halftones by observing the variation in affine
approximations based on local Fourier Transforms. As probably
expected, the accuracy of the method is not quite as good as that
achieved using an existing image registration method. However
that method requires that the original image (or halftone) are
known to the rectification process and this is not always the case.
Advantageously we may wish to embed information in generic
halftone images that are not know to the user and this can now be
achieved using this novel rectification scheme. The accuracy of the
results obtained here suggests that this should be possible but the
proof will be in the data recovery rates of the overall approach (this
requires that we also recover the remaining translation and will be
the emphasis of future work).

Two major choices were made in the design of this method (1)
to use the Fourier transform to estimate the local screen directions
and (2) to use a synthesized 4 point reconstruction method to
estimate the homography based on a pair of estimated north/south
cardinal points. The Fourier technique was preferred to the
alternative approach of recovering structure directly from the local
halftone dot patterns. The local Fourier transform provides an
effective, efficient and most importantly robust method for the
recovery of the image structure over a region. It also allows us to
obtain initial and final (correcting) affine transformations directly
from the image. However as the method is an approximation it is
necessary to iterate when the distortion is significant.

Likewise other rectifying homographies that leave only affine
[11] or similarity [12] can be obtained directly from the data we
have extracted (i.e. local screen directions and vanishing points).
However we find our approach to be preferable as, provided we
start from a reasonable approximation (obtained using AffineDFT),
it produces a good solution with roughly the correct scale,
orientation and aspect ratio (and only a modest translation). This,
amongst other things, makes the task of managing homographies
and image rectification much more straight forward.
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