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Abstract— Halftoning is a key stage of any printing image 

processing pipeline. With colorant-channel approaches, a key 
challenge for matrix-based halftoning is the co-optimization of the 
matrices used for individual colorants, which becomes increasingly 
complex and over-constrained as the number of colorants increases. 
Both choices of screen angles (in clustered-dot cases) or structures, 
and control over how individual matrices relate to each other and 
result in over- versus side-by-side printing of the colorants, impose 
challenging restrictions. The solution presented in this paper relies 
on the benefits of a Halftone Area Neugebauer Separation (HANS) 
pipeline, where local Neugebauer Primary use is specified at each 
pixel and where halftoning can be performed using a single matrix, 
regardless of the number of colorants. The provably complete plane-
dependence of the resulting halftones will be presented among the 
solution’s benefits. 

Index Terms— Digital printing, Image processing 

I. INTRODUCTION 
he color and image processing pipeline of any printing 
system needs to address at least the following questions: 

how does color content get adjusted to the capabilities of a 
given printing system (i.e., color management), how are the 
system’s colorants combined to match the colors of its gamut 
(i.e., color separation) and how color separation choices are 
translated into discrete colorant amount placement in the final 
print (i.e., halftoning). 

Traditionally, color separation consisted in answering the 
question of how much of each available colorant to use for 
matching each color within a printing system’s color gamut and 
halftoning was responsible for making spatial choices of where 
to apply each colorant in turn, given the choices of colorant 
amounts made during color separation. Halftoning colorant 
amounts one by one can lead to unwanted interactions between 
their halftone patterns. To mitigate this, previous work focused 
on avoiding unwanted interactions. For the case of clustered-
dot halftones, individual threshold matrices are designed to 
minimize moiré effects (e.g., [1]). For dispersed-dot halftoning, 
local neighborhood operations are needed to provide “plane-
dependency” between specific colorants, allowing for their 
placement to be kept apart for where possible; this was 
performed for error diffusion (e.g., [2, 3]), along with a 
parallelized version [4]. Related to the approach presented in 
later in this paper is a class of stacked multi-toning error 
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diffusion algorithms [21, 22]. Here, in the simpler case of a 
single colorant, multiple levels are error-diffused such that the 
resulting combined pattern involving multiple levels of a 
colorant has the desired properties (e.g., blue-noise). This 
involves a sequential process applied to an area-coverage 
ordered hierarchy of tones, where the tone with highest 
coverage is error diffused first and subsequent tones of 
decreasing coverage are error-diffused over the locations used 
by higher-coverage levels. The approach also extends to 
multiple colorants and their combinations, processed in order of 
decreasing area coverage and to multi-scale processing [22]. 
While such approaches offer some control over colorant 
combinations, they are constrained by operating in a specific 
order of decreasing coverage and by diffusing error between at-
pixel colorant combinations. 

 
Fig. 1: HANS print control as mosaic building. 
Many of the above limitations are a consequence of acting on 

colorant amounts determined by color separation. When the 
domain in which color separation specifies printed output 
changes, so do the constraints and opportunities for halftoning. 
This is what the introduction of HANS [5] brings to the table, 
where color separation no longer specifies colorant amounts, 
but where it determines what relative area coverage to assign to 
each of a system’s Neugebauer Primaries (NPs). Hence, for a 
binary printing system with three inks, where color separation 
previously specified continuous amounts of CMY, a HANS 
pipeline specifies relative area coverages for eight NPs: blank 
substrate, C, M, Y, CM, CY, MY, CMY. Instead of the result 
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of color separation being instructions that apply colorant-by-
colorant, they become more akin to selecting numbers of tiles 
of different colors with which to fill a given area of a mosaic 
(Fig. 1).  

More specifically, the output of color separation is in the 
form of NP area coverages (NPacs) per pixel, such as the 
following example taken from our simple CMY system: 
[w,C,MY] = [0.6,0.3,0.1], which specifies that 60% of some 
local area be left blank, 30% be covered by cyan (C) and 10% 
contain the combination of magenta and yellow (MY). Table 1 
summarizes the main differences between a colorant-based 
domain and a HANS domain. 

The differences shown in Table 1 due to a change in domain 
from colorants to NPacs mean that prior art on halftoning 
algorithms does not directly apply and new ways to map from 
NPacs to NPs (the HANS equivalent of mapping from colorant 
%-ages to NPs, which is the role of colorant channel halftoning) 
need to be developed. Colorant based matrix halftoning applies 
halftone matrices to each of the colorant channels individually 
(with some level of co-optimization being possible) and the 
resulting halftone is the superposition of colorant channel 
halftones and the respective choices made at each colorant 
level. This cannot be done in NPac terms. While it is possible 
to think of NPs as the HANS equivalent of colorant channels, 
this analogy has limitations since NPs are strictly 
complementary. Hence, performing the equivalent of colorant 
channel based matrix halftoning for a Cyan (C) NP plane and 
an NP plane that represents the overprint of C and Magenta (M), 
must result in a halftone that never places C at a location where 
C and M have been placed and vice-versa. This is not an issue 
in colorant based halftoning where a C plane and a M plane are 
halftoned separately and their joint, superposed halftones 
determine their coincidence (overprint).  
	 Colorant	based	 HANS	

Domain	
Colorant	(ink)	
channels	

Neugebauer	Primary	
area	coverages	

What	is	
controlled	

Amount	(%)	of	each	
colorant	

Area	coverage	
(probability)	of	each	
at-pixel	state	(NP)	

Dimensionality	
#	of	colorants	(e.g.	4	
for	CMYK)	

#	of	Neugebauer	
Primaries	(e.g.	16	for	
binary	CMYK)	

Role	of	
Halftoning	

Spatial	distribution	
per	colorant	channel	
–determines	
overprinting	statistics	
jointly	with	color	
separation	

Spatial	distribution	of	
at-pixel	halftone	
values	(NPs)	–	explicit	
control	over	
overprinting	is	
exercised	by	color	
separation	alone	

Tab. 1: Overview of a colorant based approach to print 
control and HANS 

Likewise, in colorant based error diffusion algorithms, what 
is halftoned are colorant channels and the error is incurred in 
colorant proportions. Again, this does not apply to the HANS 
domain directly, whether in its simplest form, or advanced 
evolutions of error diffusion methods, such as those using 
Direct Binary Search [16], hierarchical [17,18] or multiscale 

[19] approaches, since they still operate in colorant channels. A 
key point to note here is that while for a given NPac there is a 
unique, direct conversion to a colorant domain, this does not 
hold vice versa. For example, 50% of C and 50% of M inks (in 
colorant terms) can in HANS terms mean 50% of C and 50% of 
M (in at-pixel halftone state, NP terms – meaning half the area 
is occupied by halftone values of C and half the area is occupied 
by halftone values of M) or it can mean 50% of C and M 
overprinted with 50% left blank (again, in at-pixel halftone 
state, NP terms) or anything in-between. In other words, what 
in colorant terms is a single colorant vector, in HANS terms is 
a continuum. 

In previous work, the halftoning applied to such NPacs has 
been error-diffusion based [5], where at a given halftone pixel, 
one of the NPac’s NPs was selected. E.g., in the above example, 
it could be the blank NP that would be selected for one pixel, 
resulting in an error of 40% too much blank coverage and C and 
M plus Yellow (Y) being short by 30% and 10% respectively 
(Fig. 2). This error would then be diffused to neighboring 
pixels’ NPacs using existing error diffusion [6]. 

 
Fig. 2: HANS error diffusion example. 
While error diffusion is an excellent way for taking NPacs 

and constructing colorant patterns from them, it does have 
several limitations. The first is throughput, since a sequential 
traversal of halftone pixels is required and even though there 
have been some ingenious attempts at parallelization [4], even 
their speeds are well below those of matrix based halftoning, 
where each halftone pixel can be processed independently. This 
in turn lends itself to massive parallelization and provides a 
scalable throughput architecture. 

The second challenge of some error diffusion algorithms is 
that they involve an element of randomness and therefore 
results in varying halftone patterns for the same input. This 
results both in challenges for color modeling and for post-
processing that require deterministic patterns (e.g., the stitching 
together of halftones for separate parts of a printing system, or 
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the application of data embedding). 
Both these challenges point to the use of matrix-based 

halftoning for HANS. However, existing solutions, with 
potentially a different matrix for each colorant and with 
halftoning done mostly independently per colorant, are not 
directly applicable to HANS. The key reason for this is the 
difference in the two domains – the colorant one and the NP 
one. While the former under-determines halftone patterns, in 
that multiple patterns of colorant placement can match a given 
combination of colorant amounts, the latter specifies unique 
colorant combination statistics. Hence, the separate use of 
halftoning matrices is not an option, since their application to 
on an NP-by-NP basis would introduce even greater constraints 
on their generation than colorant channels do and since the 
number of NPs can exceed several hundred or even thousand, 
this may not be possible. 

To address these challenges, the PARAWACS (Parallel 
Random Weighted Area Coverage Selection) method will be 
introduced next, followed by a proof of its full plane-
dependence and finally an analysis of its pattern quality. 

II. PARAWACS 
Like in the case of an ink-channel separation, HANS too uses 

relative proportions of addressable channels, however unlike 
the ink-channel case, these addressable channels are 
Neugebauer Primaries and the amounts relate to proportions of 
device states. For an input, such as RGB device color, a HANS 
separation uses recipes of NPs, or NP area coverages as its 
domain. These area coverages can be thought of as implicitly 
referring to a unit area and the proportions of an NPac therefore 
express relative sub-areas that need to be occupied by each NP 
present in the NPac. Hence, one way to think about the role of 
halftoning here is that for a sufficiently large area of a constant 
NPac, halftoning should result in a placement of individual NPs 
such that when counting their frequency over the area, the 
original area coverage is obtained. This is no different from 
traditional, ink-channel based separations where ink coverages 
are specified and halftoning distributes them. There too an area 
of constant ink-channel coverages, once halftoned, will result 
in the specified amounts of inks. 

 
Fig. 3: Halftone of NPac of 80% blank media, 10% of one 

drop of M and 10% of C over 128x128 pixels. 
So, given an area of 128 x 128 pixels that has a constant NPac 

of 80% blank substrate, 10% one drop of M and 10% of C, a 
simple area-coverage-preserving halftoning is sequential 
placement (Fig. 3). Counting the number of pixels then yields 
1638 pixels (10%) of each of M and C and the remaining pixels 
are left blank (80%). While Fig. 3 clearly is not a desirable 
halftone, it satisfies the constraint of having distributed the 

relative area coverages of the NPac. 
Another way to think about the example above is the 

following: given a (sufficiently large) area of a constant NPac, 
its halftone should have the following property: The likelihood 
of picking one of the NPs from the halftone of the area is equal 
to the area coverage of the input NPac. 

In other words, if we uniformly randomly sampled locations 
of the halftone in Fig. 3 we would have an 80% chance of 
picking a blank location, a 10% chance of picking a one drop of 
cyan ink pixel etc. Nonetheless, Fig. 3 lacks another important 
attribute of halftoning, which is a uniform spatial distribution 
of the NPs. Instead, it simply clustered and ordered all states 
sequentially. 

Since we described an NPac as a probability distribution, a 
simple way to have a more uniform spatial distribution is to 
generate uniformly distributed random numbers, using a 
standard random number generator and scaling them to a range 
of 0 to 100 (the range of the NPacs). Then, depending on the 
randomly generated value, a different NP is chosen from the 
NPac, proportionally to its probability or area coverage. To 
simplify this selection, the NPac can be expressed cumulatively 
such that the NPac: [Blank 80%, 1 drop M 10%, 1 drop C 10%] 
or a shorthand (with W denoting blank substrate, typically 
White (W)): [W = 80%, M = 10%, C = 10%] becomes in 
cumulative terms [W = 80%, M = 90%, C = 100%], which in 
turn defines intervals for each of the NPs such that [0 to 80] 
corresponds to the Blank state, [80 to 90] to one drop of M and 
[90 to 100] to one drop of C. Given this representation, the 
random numbers generated simply need to be categorized 
according to the intervals. If a random number at pixel [x, y] is 
in the range [0 to 80] it is left blank, if it is in the range [80 to 
90] a drop of M NP is placed and if the random number is in the 
interval [90 to 100] a C drop NP is placed. The diagram in Fig. 
4 shows this process for four random values (corresponding to 
four [x, y] locations): 

 
Fig. 4: Uniform random numbers halftoning NPac in Fig. 1. 
Below, pseudo-code is shown that corresponds to the process 

in Fig. 4, performing the halftoning operation at a single pixel. 
The inputs are a halftone value (i.e., from a halftone matrix 
generated using methods such as those in [8. 9]), a sequence of 
NPs arranged in a chosen order (of length n) and a 
corresponding sequence of area coverages (ACs, of the same 
length as NPs, obtained using methods such as presented in [5]): 

Inputs: HT_value, NPs, ACs 
% build cumulative probability distribution of ACs 
ACs_cumulative = zeros(n, 1); 
ACs_cumulative(1) = ACs(1); 
for i=2:n 
    ACs_cumulative(i) = ACs_cumulative(i-1) + ACs(i); 
end 
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% find NP index based on HT_value  
for i=1:n 
    if ACs_cumulative(i) >= HT_value 
        NP_selected = NPs(i); 
    end 
end 
Output: NP_selected 

Fig. 5  shows the result of applying this process based on a 
uniform random number generator. The resulting halftone still 
satisfies the condition of placing the correct number of each of 
the constituent NPs of the NPac over the patch, however, it 
distributes the states more evenly than the naïve, sequential 
placement in Fig. 3. In halftoning literature, the type of pattern 
shown in Fig. 5 is often referred to as white noise [7], due to the 
uniform random nature of the placement. 

While these random numbers can be generated on-line, 
independently for each [x,y] location, doing so means there is 
no consideration for the overall pattern. And, while Fig. 5 is 
significantly better than Fig. 3 in terms of evenness, clearly the 
pattern is noisy and would result in a grainy print. This can 
further be seen in Fig. 6 (left) which shows all halftone values 
(the random values used as selectors in the above process) over 
the 128 x 128 pixel area. 

 
Fig. 5: Uniform random numbers used to halftone the same 

NPac as shown in Fig. 3. 

 
Fig. 6: A grayscale visualization of the uniform random 

numbers used to produce the halftone in Fig. 5 (left) and of a 
sequential choice used for the halftone in Fig. 3 (right). 
Note that the halftone in Fig. 3 can also be thought of as 
corresponding to a matrix of halftone values and Fig. 6 (right) 
shows this matrix in grayscale. The values in the two examples 
of Fig. 6 are the same 128x128 grayscale values, except they 
are placed differently – in one case uniformly randomly and in 
the other sorted by grayscale value and placed sequentially. 

An important property of PARAWACS can be seen here 
already: the spatial nature of the values used in the selection of 
NPs is directly translated in the halftone. Hence Fig. 6 can be 
thought of as halftone matrices that can be applied to any NPac 
or any content. There is a rich body of literature in the field of 
designing such halftone matrices, even if in a different context. 
For the case of dispersed-dot halftoning, an example of blue-
noise matrix generation is the void-and cluster algorithm [8]; 

dispersed-dot matrices have also been generated using direct 
binary search, or DBS [9]. An example of clustered-dot 
halftoning where clusters are built on blue noise centers is 
referred to as green noise [7]. Figs. 7 and 8 show blue and green 
noise arrangements – both the halftone matrices as and the 
result, when applied to the same NPac patch as in Figs. 3 and 5. 

Recall that all the above halftones share the property of 
having the same number of pixels left blank (80%), the same 
number of pixels occupied by one drop of M (10%) and the 
same number of pixels occupied by one drop of C (10%), but 
they differ in the spatial arrangement of the halftone values (the 
halftone matrix). Hence the above halftone matrices will have a 
uniform probability of each of the gray-scale values: e.g., using 
an encoding of [0 to 255] for grayscale values there will be 
(128*128)/255 pixels of each of the 255 values in the matrix. 

 
Fig. 7: Blue noise matrix (left) and resulting halftone (right). 

 
Fig. 8: Green noise matrix (left) and halftone (right). 
Both the precision at which area coverages are encoded (i.e. 

the % values of the NPac), the precision at which the values of 
the halftone matrix are generated and the patch size over which 
an NPac is constant, determine the accuracy with which an 
input NPac can be reproduced. Again, this is analogous to the 
colorant channel approach where the accuracy of reproducing 
colorant proportions depends on similar factors. 

 
Fig. 9: Halftones an NPac, using one clustered-dot halftone 

matrix with two NP-orderings: W, M, C (left) & C, M, W (right). 
Another parameter is the order of NPs in an NPac, based on 

which the cumulative distribution is built. Whether blank 
substrate is first or last determines which ranges of values of the 
halftone matrix get used for its pattern and while in a white-
noise matrix this may not matter much, since all values are 
equally white-noise, once a specifically designed halftone 
matrix is used, the difference can be significant. A simple 
example is shown in Figure 9, where the same green-noise 
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matrix is used as in Fig. 8, except reordering the NPs in reverse 
order (one drop of C first, then one drop of M and finally blank 
substrate). Notice the difference between Fig. 8 (right) and Fig. 
9 where the blank media in one case is the surround of the 
clusters, while in the other case it is at the center of the clusters. 

Another important property of this approach of halftoning, 
which acts by means of selecting NPs from a predetermined list, 
and selects them according to a predetermined probability, is 
that, by definition, no NP that is not in the NPac can be placed 
in the halftone. While this may seem obvious, it certainly is not 
the case in colorant-channel halftoning, where the colorant-
recipe only determines colorant quantities and it is left up to 
halftoning to determine how to place each drop of each of the 
inks individually without full control over whether to place 
drops on top of each other (dot-on-dot printing or overprinting) 
or whether to place them next to each other (dot-off-dot printing 
or side-by-side printing). What this means is that secondaries, 
such as one drop of C and one drop of M placed at the same [x, 
y] location, are an indirect consequence of halftoning. This is 
both true for traditional matrix-based halftoning and error-
diffusion, since both act in colorant-channels. While it is 
possible to correlate (or de-correlate) colorant channels and 
therefore favor overprinting (or side-by-side printing), the level 
of control is indirect (overprinting would occur after a certain 
amount of drops has been placed) and global, meaning that it is 
not possible to have a pipeline that for some colors uses 
exclusively overprinting NPs, while for other colors uses 
exclusively a combination of two single-ink NPs (i.e. side-by-
side printing). In a HANS domain and with PARAWACS 
halftoning, instead, access to all possible NPs and all their 
possible probability distributions (NPacs) is provided 
concurrently in a single pipeline and is guaranteed to be 
maintained in the halftone. 

A consequence of the above property is the potential for 
better color accuracy both at single NPac level since halftoning 
is deterministic and predictable, as well as better behavior 
between nodes (combinations of NPacs) since transitioning in 
the HANS domain remains closed in terms of the constituent 
NPacs: an NPac that is half-way between two NPacs will have 
50% probabilities from each of the two NPacs hence only 
contain NPs that are present in the two end-point NPacs. 

While in the examples used to illustrate the halftoning 
mechanism, a square patch has been used, this probabilistic 
understanding of NPacs and their halftoning applies at a single 
pixel too. As is the case in general image content, every pixel 
of an input image can vary in terms of RGBs and therefore once 
a HANS color separation is applied, can have a different NPac. 
Hence, NPacs are better thought of as probabilities than recipes 
since at any one pixel a single NP needs to be selected from 
among the NPs of the NPac. Having image content expressed 
as an array of such probability distributions at each pixel, 
converting the array from NPacs to NPs – i.e. halftoning – is by 
definition a problem of sampling probability distributions, just 
the same as in the case of the constant NPac over some area. 
Note again that this is analogous to traditional, ink-channel 
based domain. Here, the colorant-channel recipes at each pixel 
are probability distributions of the respective inks too, except in 

a domain that is not directly related to NPs but where halftoning 
determines states in each ink-channel and it’s their union that 
indirectly determines the NP to be placed at a location. 

   
Fig. 10: An image halftoned using a white noise (left), blue 
noise (center) and green noise (right) matrix. 

To illustrate the halftoning algorithm on more complex 
content an image is shown in Fig. 10 halftoned using three 
different halftone matrices described earlier (white, blue and 
green noise) and a constant NP-ordering (light-to-dark) that has 
empirically been found to be pleasing for image content. 

Another important aspect of the present algorithm is its 
computational complexity compared to other approaches. Error 
diffusion for example is notoriously complex and hard to 
parallelize (some attempts have been made [4]) as well as non-
deterministic in that the same colorant-vector can yield 
different at-halftone states, can depend on content that may not 
be visually relevant (e.g. a large error carried over many pixels) 
and a given pixel may end up with a halftone value that does 
not pertain to its colorant vector (again due to the error vector, 
the error may accumulate and a halftone pixel may be placed 
using colorants not present at that pixel). It is also hard to 
parallelize due to its sequential nature. Colorant based matrix 
halftoning instead requires as many thresholding steps as there 
are colorants. PARAWACS instead involves a single operation 
per halftone pixel that amounts to the comparison of the value 
of the halftone matrix at that location with the cumulative 
probability distribution, resulting in the final halftone value 
directly. This both lends itself well to parallelization, since 
choices are made independently, and results in a deterministic 
process: for the same halftone matrix value and the same NPac, 
the same NP (at-pixel halftone state) is always selected. This 
means that, at a pixel, only NPs present in its NPac are placed.  

Since halftoning is performed in a spatially independent way, 
PARAWACS also lends itself well to functional halftoning. 
Here the halftone pattern is not determined by a matrix, but by 
a spatial function that can be computed at [x, y] given a pre-
determined f(x, y). Such functions have as their domain the 2D 
plane, while their image is a discrete interval of values, e.g., 
from 0 to 255 for an 8-bit encoding. While in matrix design one 
of the conditions of a halftoning matrix is that of tileability to 
avoid artifacts like horizontal/vertical edges where the matrices 
are tiled, in functional halftoning this constraint translates to the 
function being defined over arbitrary [x, y] values (hence no 
tiling occurs). Here an interesting class of functions are 
quasicrystals [10] or quasi-periodic crystals, which are 
aperiodic structured patterns that never line up perfectly with a 
shifted copy of themselves – they lack translational symmetry. 
They are ordered but not repeating and while there is no single 
functional definition for them, the most common approach is to 
generate them by super-imposing a series of wave functions, 
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which can be computed at any location [x, y] analytically. They 
form an infinite class of functions that correspond to an infinite 
set of patterns depending both on spatial location, a constant-
offset and the number of waves used in their generation. All 
these parameters (location, constant offset, number of waves) 
can be varied and result in different patterns. 

Let n denote the number of waves to be added up, x and y 
refer to spatial location in a plane and t be an offset parameter. 
Then the value of a quasicrystal function Qn,t(x, y) can be 
written as follows: 

Qn,t(x, y) = ∑i cos(sin(θi)*x + cos(θi*y + t)) 
where i is from 1 to n and θi is defined as follows: 
θi = 0 : π/n : π(1 - 1/n) 
For n=6 and a computing the values of Qn,t(x, y) over a grid 

of 512x512 [x, y] locations, the resulting pattern is shown in 
Fig. 11 (top right), where patterns for n equal to 3, 4 and 5 are 
also shown.  

 

 
Fig. 11: Examples of quasicrystal patterns for n = 3 to 6. 

The above function Qn,t(x, y) will compute values between 
[0, 1] at any location in the [x, y] plane, however their 
distribution is not uniform. Since a halftone matrix is expected 
to have the same frequency for each level, an extra step is 
required that maps the [0, 1] range with its respective frequency 
to the appropriate range, say, [0 255]. This is achieved by 
computing quantiles with a resolution in function of the desired 
bit-depth of the halftone matrix, pre-computed over some 
representative area of the function results. Once quantiles are 
computed, the respective ranges can be mapped to halftone 
level values, ensuring a uniform distribution. 

While this approach does not result in a halftone matrix, its 
use is the same since instead of comparing the cumulative area 
coverage distribution against a value from a matrix whereby [x, 
y] in the image being halftoned and [x, y] in the halftone matrix 
are aligned, in this case the halftone value can be computed on-
line at halftone time, followed by the image-value adjustment 
(a simple look-up) to achieve a uniform distribution. Note that 
for this approach to be used at print-time, computational 

complexity needs to be considered and depending on the 
complexity of the pattern generating functions and the available 
processing power this method may or may not be feasible. An 
alternative to at-print-time computation of values is to pre-
compute some area of values ahead of printing sufficient to 
keep a buffer of values available at print-time. Also, note that 
the intention here is to simply showcase an alternative to either 
error diffusion or a pre-computed halftone matrix (such as those 
used in the rest of this article) that is enabled by PARAWACS 
and its use of a single value at a given pixel. 

The above types of matrices used with PARAWACS (white 
noise, blue noise, green noise and the functional quasicrystal 
patterns) will impact dot-gain as well, as is the case with any 
other halftoning algorithm. This is a consequence of the 
inherent patterns rather than the algorithm as such. A clustered-
dot placement (such as using an AM screen in traditional 
halftoning, or a green-noise matrix shown above) will have 
different (lower) dot-gain than a dispersed-dot (FM screen or 
blue noise) pattern due to the sizes of the respective areas 
(clusters) of each of the Neugebauer Primaries. 

 
Fig. 12: Halftoned NPac created from Demichel probabilities 

While so far all examples used the HANS-native NPac 
domain, PARAWACS can also be used with colorant channels. 
In this case an ink vector input (a contone specification of 
amounts of C, M, Y, and K colorants) is first converted to an 
NPac that is halftoned by PARAWACS. E.g., a document to be 
printed may be specified in amounts of C, M, Y, and K, thereby 
precluding a colorant separation step. In this case, the CMYK 
amounts need to be converted to NPac probability distributions. 
The task of creating Neugebauer Primary probabilities from 
uncorrelated CMYK primary probabilities involves 
determining overlapped printer primaries (CM, CY, MY, CK, 
MK, …) and their associated probabilities. Automated creation 
of NPacs from CMYK can be achieved using a variety of 
methods. One method is to directly compute NPs using the 
Demichel equations. This method predicts the NPs based on the 
probability of uncorrelated overlap [11]. For example, a CMYK 
of (60%, 60%, 0%, 0%) becomes [C = 24%, M = 24% CM = 
36%, W = 16%]. An example of this PARAWACS halftoned 
NPac is shown in Fig. 12. In contrast to Demichel probabilities, 
it is often desirable to minimize the probabilities of NPs with 
overlap of printer primaries, which in turn maximizes overall 
spatial frequency and thereby reduces visible grain. One 
method to achieve this is to “stack” K, C, M, Y probabilities 
and produce overlapping NPs only if the sum of K, C, M, and 
Y exceeds 100%, like the C, M correlation algorithm described 
in [12]. Continuing the example, a CMYK of (60%, 60%, 0%, 
0%) becomes [C = 40%, M = 40% CM = 20%, W = 0%]. We 
can generalize this approach by successively creating 

256 (size) 4 (waves) offset (1) 256 (size) 6 (waves) offset (1) 256 (size) 8 (waves) offset (1)

256 (size) 3 (waves) offset (1) 256 (size) 5 (waves) offset (1) 256 (size) 7 (waves) offset (1)
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overlapping NPs until the sum of probabilities (excluding 
white) is <= 100%.  

 Working through the example, we start with: [C = 60%, M 
= 60%]. This exceeds 100%, by 20%, which is assigned to CM 
to give: [CM = 20%, C = 40%, M = 40%] (Fig. 13 (left)). 

 
Fig. 13: Halftoned NPac created from simple (left) and more 
complex (right) NP stacking algorithm. 
A more complex example (Fig. 13 (right)) starts with: [K = 
30%, C = 50%, M = 50%, Y = 30%]. Here the sum begins at 
160%. Starting with the last colorant, Y is 30% in excess of our 
maximum of 100%. So, 30% Y is joined with another NP, next 
in line M, giving: [K = 30%, MY = 30%, C = 50%, M = 20%]. 
The sum is reduced to 130%. Following the ordering, next, we 
take 20% M and join it with C, resulting in: [K = 30%, CM = 
20%, MY = 30%, C = 30%] The sum drops to 110%, and we 
are left with an excess of 10% C. This 10% C is joined with K 
(the only remaining single ink NP), giving the final NPac: [CK 
= 10%, K = 20%, CM = 20%, MY = 30%, C = 20%]. 

This algorithm optimizes for coverage and minimum-ink 
NPs. Other optimization goals may be used to drive the 
decisions that create the NP probabilities.  

III. PARAWACS PROPERTIES & EVALUATION 
Here we look at the property of plane dependence in 

PARAWACS, which refers to the halftone patterns of multiple 
colorants being such that the placement of one colorant informs 
the placement of another so that the combined spatial structure 
of the halftones of multiple colorants is independent of what 
colorants constitute it. If there is no plane dependence, the 
placement of one colorants is unaware of the placement of 
others and interference may result. Instead, if there is full plane 
dependence, then the combined halftone patterns of multiple 
colorants are like the pattern that would be obtained if only a 
single colorant were used. 

(a)  (b)  

Fig. 14: 40% C versus 20% C plus 20% M (a) PARAWACS 
versus (b) error-diffused halftones. 

To test the plane dependence of PARAWACS, a simple, two-
ink, C and M system will be used here with the aim of getting 

20% C and 20% M coverage and comparing it to a 40% C-only 
coverage. Two patches will be halftoned in each case: one, 
where each pixel contains the following NPac: [Blank = 60%, 
C = 40%] and the other where the NPac at each pixel is [Blank 
= 60%, C = 20%, M = 20%]. 

Using PARAWACS, the choice of NP at a pixel is driven by 
a threshold matrix, whose value for that pixel is compared to 
the cumulative area coverage vector at that same pixel. I.e., here 
we take the above NPacs and re-express them cumulatively as 
[W = 60%, C = 100%] and [W = 60%, C = 80%, M = 100%]. 
In other words, we look at how much area is covered by all NPs 
up to and including a given NP (which implies a fixed ordering). 
Then, if the current cumulative value is greater than or equal to 
the threshold value, the corresponding NP is chosen. 

Fig. 14a shows first the C-only result, then the C and M 
result, followed by a 64x64 detail and its B&W version of the 
two patterns. From here it can be seen that the two are identical 
(which is confirmed by subtracting the two images). 

The reason for this identity between the W patterns in the C 
versus C and M cases is inherent in PARAWACS where a 
cumulative NP probability can be thought of as intersecting a 
threshold matrix and the cumulative probability values serving 
as break-points. Given a threshold matrix, it is the cumulative 
value (e.g. 40%), regardless of its underlying granularity (how 
many NPs add up to 40%), that solely determines the resulting 
halftone pattern. In the above case of [W = 60%, C = 100%] 
and [W = 60%, C = 80%, M = 100%] the cumulative value is 
the same at 60% for blank media, hence all values from the 
threshold matrix that go up until and including 60% - 153 in an 
8bit range - will be left blank since they correspond to the blank 
substrate NP. The only difference is that in the [W = 60%, C = 
100%] case, all values from [154 to 255] will contain the NP of 
one drop of C, while in the case of [W = 60%, C = 80%, M = 
100%] values from [154 to 204] will be C while [205 to 255] 
will be M. However, in this second case too, non-blank NPs are 
placed at all values between [154 and 255] as before, thus 
resulting in the same pattern. So, all NPacs that have X% of 
blank substrate specified (assuming order is maintained and w 
is always the first NP) will have the same patterns with respect 
to blank. More generally still, any NPacs that have X% of NP 
Y will have the same patterns with respect to NP Y (assuming 
NP Y is either first or last in order). 

For comparison, Fig. 14b shows the same NPacs error-
diffused. As can be seen, the combined C and M pattern no 
longer matches the C-only pattern, but (and this is a 
consequence of HANS) there are no CM overprints as only C 
and M NPs were specified by the separation. The reason for 
there not being a strict match is twofold: first, there is an 
element of randomness in the error diffusion shown above and 
second, even when that randomness is turned off (and a more 
unpleasant pattern results) there is no match, since the error for 
the non-blank part of the pattern is in one case split between 
two other NPs (C and M) while in the other case it belongs all 
to one NP (C) and therefore has different ‘granularity.’ E.g., 
let’s take the case of [C = 20%, M = 20%, W = 60%]. Here the 
first NP is blank and we propagate an error of [20 20 -40]. For 
the pixel to the right, its NPac will be the scaled error (7/16)*[20 
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20 -40] + [20 20 60] which is [28.75 28.75 42.5] and we place 
w again. Now take the other NPac: [C = 40%, W = 60%]: the 
first NP is w and we propagate an error of [40 -40]. The pixel 
to the right’s NPac will be the scaled error (7/16)*[40 -40] + 
[40 60] which is [57.5 42.5] and we place C. The remainder 
after blank grows more quickly when applied to a single NP 
than if it is split between two. 

IV. FREQUENCY DOMAIN ANALYSIS  
The complex nature of dispersed-dot halftones patterns can 

be simplified in the frequency domain. The Radially Averaged 
Power Spectrum [13] is a convenient one-dimensional signature 
of such patterns. Consider the case of generating of a fixed 
NPac of 5% C and 5% M by two different methods.  Figure 
15(a) shows the result of using PARAWACS and a blue noise 
matrix. By way of comparison Figure 15(b) shows an existing 
widely used method of halftoning that simply uses a threshold 
matrix to process each ink independently.  In this case a blue 
noise threshold matrix and a circularly shifted copy of that 
matrix were used to binarize a 5% C image and a 5% M image, 
then combined to form the resulting uncorrelated halftone. The 
pattern is not nearly as homogeneous as that generated by 
PARAWACS in (a). 

 
(a) PARAWACS generated halftone of 5% C and 5% M. 

 
 (b) Pattern created by combining uncorrelated halftones of 5% 
C and 5% M. 

 
Fig. 15: Comparison of radially average power spectra of two 
halftones.  (a) shown in orange, and (b) shown in green. 

The radially average power spectrum of each plot is also 
shown in Figure 15 of the White NP of those patterns. This is 
equivalent to the aggregate pattern of all non-white pixels in the 
pattern. To arrive at these plots we first estimated the power 
spectrum by averaging 16 different samples of the pattern, each 
of size 256x256 pixels. We then segmented the spectrum into 
concentric annuli around the DC term and averaged the values 
within each annulus. These annuli extend to the corners of the 
baseband, which are at Ö2 cycles/pixel, so the plot covers the 
full range of frequency from 0 to .707 cy/pixel.  

The PARAWACS (orange) curve in Fig. 15 exhibits a blue 

noise shape with energy concentrated at the principal 
frequency, white noise above the principal frequency and very 
little energy below the principal frequency. The red vertical line 
on the plot marks the principal frequency for the pattern shown. 
The nature of the blue noise principal frequency was first 
derived in [13] and revised in [14].  

 
 (a) The Cyan NP portion of the halftone in Fig 16(a). 

 
 (b) The Magenta NP portion of the halftone in Fig 16(a). 

 
Fig. 16: Radially averaged power spectra of the above patterns. 
(a) cyan, and (b) magenta. 

Starting with the same sample used in Fig. 15(a), we isolated 
the sub-images consisting of the single C-only and M-only NPs, 
and looked at their radially averaged power spectra. A small 
sample of the M-only and C-only images are shown in Fig. 16, 
along with its power spectra. The homogeneous arrangement of 
(b) the cyan pattern is reflected in the well-formed blue-noise 
spectrum. The magenta pattern (b), while well formed, is not 
quite as homogenous as the cyan-only image and this is 
manifested in the radially averaged power spectrum as a second 
peak above the principal frequency. It is important to point out 
that this pattern was not generated as a stand-alone M-only 
NPac halftone, but as part of the pattern from Fig. 15(a). Here 
too NP-order plays an important role. Exchanging the order of 
the C and M NPs would reverse the analysis. The reason for 
differences in spectrum is due to different cuts of the matrix 
having been used for the respective NPs. 

The uncorrelated halftone in Fig 15(b) has considerably more 
low frequency energy below the principal frequency than in the 
PARAWACS spectrum. Low frequency energy corresponds to 
noisier visual appearance. Its spectrum is also not as smooth. 
However, the power spectra of the M-only and C-only 
component shown in Fig. 17 is homogeneous with a well-
formed blue noise power spectrum. Because these two patters 
are generated with a circularly shifted version of the same 
threshold matrix, their power spectra are identical. Because the 
C and M patterns are uncorrelated, their sum results in 
somewhat random overlaps of C and M pixels. Those CM 
pixels in Fig. 15(b) are isolated and shown in Fig. 18. 
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Interestingly, the power spectrum for this pattern is flat, 
corresponding to a white noise nature of this CM pixel pattern.  

 
 (a) The Magenta NP portion of the halftone in Fig 16(b). 

 
 (b) The Cyan NP portion of the halftone in Fig 16(b). 

 
Fig. 17: Radially averaged power spectra of the above patterns. 
Both the magenta and cyan spectra are identical. 

The shape of the spectrum shown as the green plot in Fig 16 
can be explained from the duality of the spatial and frequency 
domains. Since the C and M patterns are shifted versions of 
shifted versions of each other, in the spatial domain it can be 
described as a single pattern convolved by pair of delta 
functions, one for the original and one for the shifted version. 
In the frequency domain this corresponds to the spectrum of one 
pattern multiplied by a 2D sinusoid.  

 

 
Fig. 18: The CM NP portion of the halftone in Figure 16(b), 
and its radially averaged power spectrum. 
One measure of the radial symmetry in halftone spectra is 
anisotropy, which can be defined as the sample variance within 
the concentric annuli as a function of frequency, summarized as 
a one-dimensional plot.  All of the halftone patterns presented 
in this section demonstrate good radial symmetry except for the 
uncorrelated pattern in Fig 15(b).  The difference in radial 
symmetry of the two halftones in Figure 16 is best illustrated in 
a full 2D plots as shown in Fig 19.  The PARAWACS plot in 
Fig 20(a) is smooth and symmetric about the DC origin.  

However, the uncorrelated plot in (b) reveals the sinusoidal 
interference.  Because we used a circular shift of [25, 25] of our 
1024x1024 blue noise threshold matrix in that case, the 2D 
sinusoid is oriented along a 45-degree angle as shown. This 
directional sinusoid imparts anisotropy in the spatial pattern and 
describes the ripples in the radial spectrum shown as the blue 
plot in Fig. 15. While thresholding individual inks with a blue 
noise matrix produces well-formed homogeneous halftones for 
each ink, the homogeneity is not preserved in the sum of such 
patterns. This is unlike the case of PARAWACS where a single 
matrix determines the pattern of the entire ink-stack (including 
its overprints determined a-priori).  

  
 (a) The halftone in Fig 16(a). (b) The halftone in Fig 16(b). 
Fig. 19: Comparison of the full 2D Fourier transform 
magnitudes of the halftones from Figure 16. The principal 
frequency is shown as a red circle. 

V. CONCLUSIONS & FUTURE WORK 
Color halftoning impacts many aspects of a print, such as 

grain, smoothness and color itself. A novel, predictable, 
deterministic algorithm was described. It was shown to give a 
great degree of control over final output patterns and is well 
behaved in that for different content that shares the overall 
coverage, the halftone pattern is provably constant.  

An important consequence of PARAWACS is that there are 
more critical choices to be made when designing halftone 
matrices, since their result directly impacts the final print, 
unlike in other matrix based halftoning approaches where the 
impact is less immediate and matrices have to work jointly 
towards a final halftone result. Any research into patterns that 
are visually pleasing or exhibit particular behavior can directly 
be applied, as can methods for their evaluation (e.g., [20]), 
making PARAWACS a uniquely flexible approach. 

We presented the basic principles of PARAWACS and its 
application to general purpose halftoning. Future work will 
consider applying additional metrics to halftones generated 
using PARAWACS, including an exploration of its impact on 
moiré in printed halftones and analysing the variance of 
Neugebauer equations as a function of window size. The level 
of control PARAWACS provides will also be explored in 
security printing, where embedding particular patterns in a 
single matrix directly translates to a change in the overall 
halftone pattern [15]. A natural extension to 3D printing will 
also be followed up, where instead of a 2D matrix of particular 
properties a 3D native matrix can be designed, with control over 
3D patterns in general and layer-to-layer interactions, 
connectedness, porosity, micro and macro geometry in 
particular. 
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